19 resultados para Aldol condensation and cleavage

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Immunoglobulin (Ig) G1 plays an important role in the adaptive immune response. Kgp, a lysine-specific cysteine protease from Porphyromonas gingivalis, specifically hydrolyses IgG1 heavy chains. The purpose of this study was to examine whether cleavage of IgG1 occurs in gingival crevicular fluid (GCF) in vivo, and whether there is any association with the presence of Porphyromonas gingivalis and other periodontopathogens. MATERIAL AND METHODS: GCF was obtained from nine patients with aggressive periodontitis, nine with chronic periodontitis and five periodontally healthy individuals. The bacterial loads of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia were analysed by real-time polymerase chain reaction, and the presence and cleavage of IgG1 and IgG2 were determined using Western blotting. Kgp levels were measured by ELISA. RESULTS: Cleaved IgG1 was identified in the GCF from 67% of patients with aggressive periodontitis and in 44% of patients with chronic periodontitis. By contrast, no cleaved IgG1 was detectable in healthy controls. No degradation of IgG2 was detected in any of the samples, regardless of health status. Porphyromonas gingivalis was found in high numbers in all samples in which cleavage of IgG1 was detected (P < 0.001 compared with samples with no IgG cleavage). Furthermore, high numbers of Tannerella forsythia and Prevotella intermedia were also present in these samples. The level of Kgp in the GCF correlated with the load of Porphyromonas gingivalis (r = 0.425, P < 0.01). The presence of Kgp (range 0.07-10.98 ng/mL) was associated with proteolytic fragments of IgG1 (P < 0.001). However, cleaved IgG1 was also detected in samples with no detectable Kgp. CONCLUSION: In patients with periodontitis, cleavage of IgG1 occurs in vivo and may suppress antibody-dependent antibacterial activity in subgingival biofilms especially those colonized by Porphyromonas gingivalis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in vivo roles of meprin metalloproteases in pathophysiological conditions remain elusive. Substrates define protease roles. Therefore, to identify natural substrates for human meprin α and β we employed TAILS (terminal amine isotopic labeling of substrates), a proteomics approach that enriches for N-terminal peptides of proteins and cleavage fragments. Of the 151 new extracellular substrates we identified, it was notable that ADAM10 (a disintegrin and metalloprotease domain-containing protein 10)-the constitutive α-secretase-is activated by meprin β through cleavage of the propeptide. To validate this cleavage event, we expressed recombinant proADAM10 and after preincubation with meprin β, this resulted in significantly elevated ADAM10 activity. Cellular expression in murine primary fibroblasts confirmed activation. Other novel substrates including extracellular matrix proteins, growth factors and inhibitors were validated by western analyses and enzyme activity assays with Edman sequencing confirming the exact cleavage sites identified by TAILS. Cleavages in vivo were confirmed by comparing wild-type and meprin(-/-) mice. Our finding of cystatin C, elafin and fetuin-A as substrates and natural inhibitors for meprins reveal new mechanisms in the regulation of protease activity important for understanding pathophysiological processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global climatology of warm conveyor belts (WCBs) is presented for the years 1979–2010, based on trajectories calculated with Interim ECMWF Re-Analysis (ERA-Interim) data. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near extratropical cyclones. Corroborating earlier studies, WCBs are more frequent during winter than summer and they ascend preferentially in the western ocean basins between 25° and 50° latitude. Before ascending, WCB trajectories typically approach from the subtropics in summer and from more midlatitude regions in winter. Considering humidity, cloud water, and potential temperature along WCBs confirms that they experience strong condensation and integrated latent heating during the ascent (typically >20 K). Liquid and ice water contents along WCBs peak at about 700 and 550 hPa, respectively. The mean potential vorticity (PV) evolution shows typical tropospheric values near 900 hPa, followed by an increase to almost 1 potential vorticity unit (PVU) at 700 hPa, and a decrease to less than 0.5 PVU at 300 hPa. These low PV values in the upper troposphere constitute significant negative anomalies with amplitudes of 1–3 PVU, which can strongly influence the downstream flow. Considering the low-level diabatic PV production, (i) WCBs starting at low latitudes (<40°) are unlikely to attain high PV (due to weak planetary vorticity) although they exhibit the strongest latent heating, and (ii) for those ascending at higher latitudes, a strong vertical heating gradient and high absolute vorticity are both important. This study therefore provides climatological insight into the cloud diabatic formation of significant positive and negative PV anomalies in the extratropical lower and upper troposphere, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Autoantibodies directed towards ADAMTS13 are present in the majority of patients with acquired thrombotic thrombocytopenic purpura (TTP). Analysis of a set of antibodies derived from two patients with acquired TTP revealed frequent use of the VH1-69 heavy chain gene segment for the assembly of anti-ADAMTS13 antibodies. OBJECTIVE: We explored the ability of two VH1-69 germline gene-encoded antibodies to inhibit the von Willebrand factor (VWF)-processing activity of ADAMTS13 under different experimental conditions. Furthermore, the presence of VH1-69 encoded anti-ADAMTS13 antibodies in 40 patients with acquired TTP was monitored using monoclonal antibody G8, which specifically reacts with an idiotype expressed on VH1-69 encoded antibodies. METHODS AND RESULTS: Binding of the two VH1-69 encoded monoclonal antibodies was dependent on the presence of the spacer domain. Both antibodies inhibited ADAMTS13 activity under static conditions, as measured by cleavage of FRETS-VWF73 substrate and cleavage of VWF multimers. The recombinant antibodies were also capable of inhibiting the processing of UL-VWF strings on the surface of endothelial cells. G8-reactive antibodies directed towards ADAMTS13 were present in plasma of all patients containing anti ADAMTS13 antibodies. CONCLUSIONS: These results suggest that VH1-69 derived antibodies directed towards ADAMTS13 develop in the majority of patients with acquired TTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleavage of the beta-amyloid precursor protein (APP) by the aspartyl protease beta-site APP-cleaving enzyme (BACE) is the first step in the generation of the amyloid beta-peptide, which is deposited in the brain of Alzheimer's disease patients. Whereas the subsequent cleavage by gamma-secretase was shown to originate from the cooperation of a multicomponent complex, it is currently unknown whether in a cellular environment BACE is enzymatically active as a monomer or in concert with other proteins. Using blue native gel electrophoresis we found that endogenous and overexpressed BACE has a molecular mass of 140 kDa instead of the expected mass of 70 kDa under denaturing conditions. This suggests that under native conditions BACE exists as a homodimer. Homodimerization was confirmed by co-immunoprecipitation of full-length BACE carrying different epitope tags. In contrast, the soluble active BACE ectodomain was exclusively present as a monomer both under native and denaturing conditions. A domain analysis revealed that the BACE ectodomain dimerized as long as it was attached to the membrane, whereas the cytoplasmic domain and the transmembrane domain were dispensable for dimerization. By adding a KKXX-endoplasmic reticulum retention signal to BACE, we demonstrate that dimerization of BACE occurs already before full maturation and pro-peptide cleavage. Furthermore, kinetic analysis of the purified native BACE dimer revealed a higher affinity and turnover rate in comparison to the monomeric soluble BACE. Dimerization of BACE might, thus, facilitate binding and cleavage of physiological substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FcαRI (CD89), the human Fc receptor for IgA, is highly expressed on neutrophil granulocytes. In this study, we show that FcαRI induces different forms of neutrophil death, depending on the inflammatory microenvironment. The susceptibility of inflammatory neutrophils from sepsis or rheumatoid arthritis toward death induced by specific mAb, or soluble IgA at high concentrations, was enhanced. Although unstimulated cells experienced apoptosis following anti-FcαRI mAb stimulation, preactivation with cytokines or TLR agonists in vitro enhanced FcαRI-mediated death by additional recruitment of caspase-independent pathways, but this required PI3K class IA and MAPK signaling. Transmission electron microscopy of FcαRI-stimulated cells revealed cytoplasmic changes with vacuolization and mitochondrial swelling, nuclear condensation, and sustained plasma membrane. Coculture experiments with macrophages revealed anti-inflammatory effects of the partially caspase-independent death of primed cells following FcαRI engagement. Our data suggest that FcαRI has the ability to regulate neutrophil viability and to induce different forms of neutrophils depending on the inflammatory microenvironment and specific characteristics of the ligand-receptor interactions. Furthermore, these findings have potential implications for FcαRI-targeted strategies to treat neutrophil-associated inflammatory diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Degradation of immunoglobulins is an effective strategy of bacteria to evade the immune system. We have tested whether human IgG is a substrate for gingipain K of Porphyromonas gingivalis and found that the enzyme can hydrolyze subclass 1 and 3 of human IgG. The heavy chain of IgG(1) was cleaved at a single site within the hinge region, generating Fab and Fc fragments. IgG(3) was also cleaved within the heavy chain, but at several sites around the CH2 region. Investigation of the enzyme kinetics of IgG proteolysis by gingipain K, using FPLC- and isothermal titration calorimetry-based assays followed by Hill plots, revealed non-Michaelis-Menten kinetics involving a mechanism of positive cooperativity. In ex vivo studies, it was shown that gingipain K retained its IgG hydrolyzing activity in human plasma despite the high content of natural protease inhibitors; that IgG(1) cleavage products were detected in gingival crevicular fluid samples from patients with severe periodontitis; and that gingipain K treatment of serum samples from patients with high antibody titers against P. gingivalis significantly hindered opsonin-dependent phagocytosis of clinical isolates of P. gingivalis by neutrophils. Altogether, these findings underline a biological function of gingipain K as an IgG protease of pathophysiological importance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.